

M62367GP

3 V Type 8-bit 8ch D/A Converter with Buffer Amplifiers

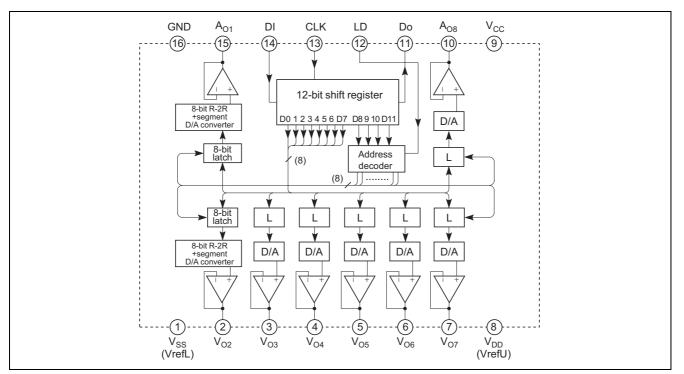
REJ03D0877-0300 Rev.3.00 Mar 25, 2008

Description

The M62367GP is a CMOS semiconductor IC has 8 channels of 8-bit D/A converter. It is operable with a low supply voltage between 2.7 to 3.6 V, and is easy to use due to serial data input, and 3-pin (DI, CLK, LD) connection with microcomputer.

The IC also contains D_0 pin terminal, enabling cascade connection, and therefore is suitable for automatic control in combination with a microcomputer.

Features


- Operable with a low voltage between 2.7 to 3.6 V
- 12-bit serial data input (connected via 3 pins: DI, CLK, LD)
- 8 channels of R-2R and segment type high-performance 8-bit D/A converters
- 8 buffer operational amplifiers with full swing of output voltage between V_{CC} and GND
- High oscillation stability against the capacitive load of buffer operational amplifiers

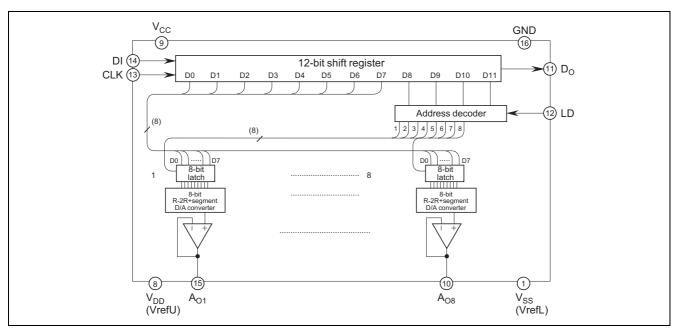
Application

Digital/analog conversion in industrial or home-use electronic equipment.


Automatic control in combination with EEPROM and microcomputer (Substitute for conventional semi-fixed resistor).

Block Diagram

RENESAS


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
14	DI	Serial data input terminal to input 12-bit length serial data
11	Do	Terminal to output MSB data of 12-bit shift register
13	CLK	Shift clock input terminal. Input signal at DI pin is input to 12-bit shift register at rise of shift clock pulse
12	LD	When H-level signal is input to this terminal. The value stored in 12-bit shift register is loaded in decoder and D/A converter output register.
15	A _{O1}	8-bit D/A converter output terminal
2	A _{O2}	
3	A _{O3}	
4	A _{O4}	
5	A _{O5}	
6	A _{O6}	
7	A ₀₇	
10	A _{O8}	
9	V _{CC}	Power supply terminal
16	GND	GND terminal
8	V _{DD}	D/A converter upper reference voltage input terminal
1	V _{SS}	D/A converter lower reference voltage input terminal

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
Upper reference voltage of D/A converter	V _{DD}	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	V
Output voltage	Vo	-0.3 to V _{CC} + 0.3	V
Power dissipation	Pd	150	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

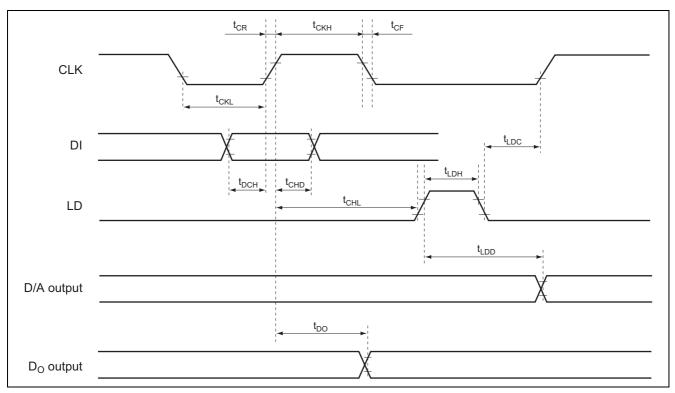
<Digital Part>

(V_{CC}, VrefU = +3 V \pm 10%, V_{CC} \geq VrefU, GND, VrefL = 0 V, Ta = -20 to +85°C, unless otherwise noted.)

			Limits			
ltem	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	Vcc	2.7	3.0	3.6	V	
Circuit current	Icc	—	0.6	2.0	mA	CLK = 1 MHz operation,
						$V_{CC}=3~V,~I_{AO}=0~\mu A$
Input leak current	I _{ILK}	-10	_	10	μA	$V_{IN} = 0$ to V_{CC}
Input low voltage	V _{IL}	—	_	0.2 V _{CC}	V	
Input high voltage	V _{IH}	0.8 V _{CC}	_	—	V	
Output low voltage	V _{OL}	—	_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	$V_{CC}-0.4$	_		V	I _{OH} = -400 μA

<Analog Part>

(V_{CC}, VrefU = +3 V \pm 10%, V_{CC} \geq VrefU, GND, VrefL = 0 V, Ta = -20 to +85°C, unless otherwise noted.)


			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Current dissipation	IrefU	—	0.6	1.5	mA	VrefU = 3 V, VrefL = 0 V
						Data condition: at maximum current
D/A converter upper	VrefU	0.7 V _{CC}	—	Vcc	V	Reference voltage cannot always
reference voltage range						be set to any value in this range,
D/A converter lower	VrefL	GND	—	0.3 V _{CC}	V	because it is restricted to the buffer
reference voltage range						amplifier output voltage range.
Buffer amplifier output	V _{AO}	0.1	—	V _{CC} – 0.1	V	$I_{AO} = \pm 100 \ \mu A$
driver voltage range		0.2	—	$V_{CC} - 0.2$	V	I _{AO} = +500 μA
						–200 μA
Buffer amplifier output	I _{AO}	-0.3	—	1	mA	Upper saturation voltage = 0.4 V
voltage range						Lower saturation voltage = 0.4 V
Differential nonlinearity	S _{DL}	-1.0	—	1.0	LSB	V _{CC} = 2.760 V
error						VrefU = 2.610 V
Nonlinearity error	SL	-1.5	—	1.5	LSB	VrefL = 0.050 V (10 mV/LSB)
Zero code error	S _{ZERO}	-2	—	2	LSB	Without load ($I_{AO} = \pm 0$)
Full scale error	S _{FULL}	-2	_	2	LSB	
Output capacitive load	Co		_	0.1	μF	
Buffer amplifier output	Ro		5	_	Ω	
impedance						

AC Characteristics

(V_{CC}, VrefU = +3 V \pm 10%, V_{CC} \geq VrefU, GND, VrefL = 0 V, Ta = -20 to +85°C, unless otherwise noted.)

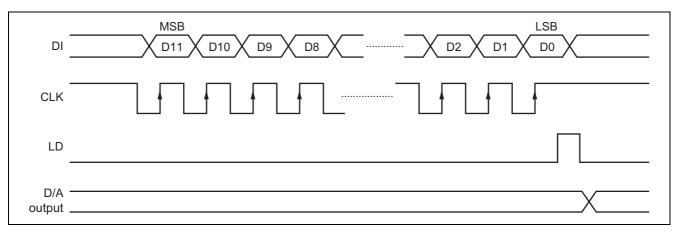
			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	—	—	ns	
Clock "H" pulse width	t _{скн}	200	—	—	ns	
Clock rise time	t _{CR}	_	—	200	ns	
Clock fall time	t _{CF}	_	—	200	ns	
Data setup time	t _{DCH}	30	—	—	ns	
Data hold time	t _{CHD}	60	—	—	ns	
LD setup time	t _{CHL}	200	—	—	ns	
LD hold time	t _{LDC}	100	—	—	ns	
LD "H" pulse duration time	t _{LDH}	100	—	—	ns	
Data output delay time	t _{DO}	70	—	350	ns	C _L = 100 pF
D/A output setting time	t _{LDD}	—	—	300	μs	$C_L \ge 100 \text{ pF}, \text{ V}_{AO}: 0.1 \leftrightarrow 2.6 \text{ V}$
						This time until the output becomes
						the final value of 1/2 LSB

Timing Chart

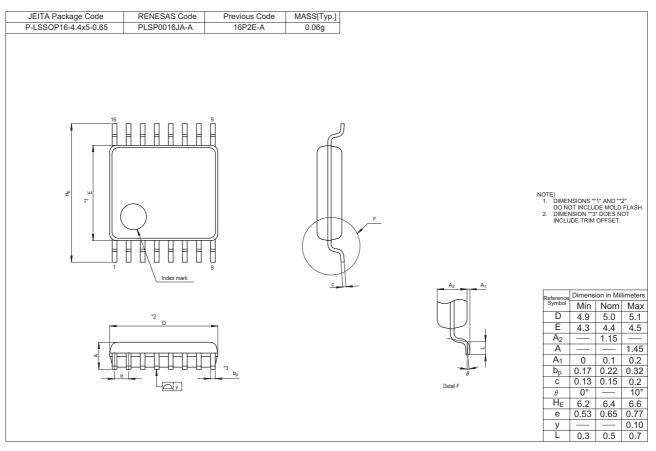
Digital Data Format

Last LSB											First MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
-		– C	DAC da	ta			-	- [DAC se	lect da	ta 🔶

DAC Data


D0	D1	D2	D3	D4	D5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL
:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL
1	1	1	1	1	1	1	1	VrefU

Note: $VrefU = V_{DD}$, $VrefL = V_{SS}$


DAC Select Data

D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	A ₀₁ selection
0	0	1	0	A _{O2} selection
0	0	1	1	A _{O3} selection
0	1	0	0	A _{O4} selection
0	1	0	1	A ₀₅ selection
0	1	1	0	A _{O6} selection
0	1	1	1	A ₀₇ selection
1	0	0	0	A _{O8} selection
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com